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Abstract

We study the large-time behaviour and the behaviour of the interfaces of the non-
linear diffusion equation
p(z)uy = AA(u)

in one and two space dimensions. The function A is of porous media type, smooth but
with a vanishing derivative at some values of u, and p > 0 is supposed continuous and
bounded from above. If p is not bounded away from zero, the large-time behaviour
of solutions and their interfaces can be essentially different from the case when p
is constant. We extend results by Rosenau and Kamin [13] and derive the large-time
asymptotic behaviour of solutions, as well as a precise characterisation of the behaviour
of the interfaces of solutions in one space dimension and in some cases in two space
dimensions. In one space dimension and when p is monotonic the result states that
the interface ((t) = sup{z € R : u(z,t) > 0} tends to infinity in finite time if and only
if [;°zp(z)dz < oo,

1 Introduction
In this article we study some properties of solutions of the nonlinear diffusion equation
(1.1) plx)u, = AA(w) z€eRY, t>0,

in one and two space dimensions. The nonlinearity A is such that A’ > 0 on (0,1) and A'(0) =
A'(1) = 0; the density function p: RY — (0, 00) is supposed bounded and continuous, and
we shall mostly be interested in the case where p(z) tends to zero for large |z|.

Equations of type (1.1) arise in plasma physics (10, 13], and in hydrology [8, 2, 7], and
in order to set the ideas we shall briefly describe the hydrological model. In the interaction
between fresh and salt water in underground aquifers, mixing of the two liquids occurs over
length scales much smaller than the size of the aquifer, and in modelling this situation it
is therefore generally assumed that a sharp interface separates the liquids. In a horizontal
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asquifer of even thickness, and under the assumption that the slope of the interface is not too
Larwe, the movement of the interface is governed by the equation 8, 2]

* o2 _ i (e 1_.“23_)=Q
(1.2 e(a, y) 7 div (n(.t,,y) u{ u)1+ [Vul2

Here ulr, y) represents the height of the interface, scaled to take values between zero and
one. The constants p and 5 represent the viscosity and the density difference between the
Hitiels. = is the porosity, and & is the permeability of the medium.

Since we shall mainly be interested in solutions « with relatively small gradients, we re-
place the quotient Vae/(1+1Vul?) in (1.2) by Vu. Furthermore, we shall mostly consider ei-
ther one-dimensional or two-dimensional axially symmetric solutions. In the two-dimensional
vase with axial symmetry, equation (1.2) reduces to

1
(1.3) 5(7'){%2;1 - ;(7';{.(1") u(l —u)u,), =0
!

where 72 = #2432 and subscripts denote differentiation. If we introduce a new space variable

7. defined by
low 7 / " ds
ogT =
1 sk(s)
then (1.3) trausforms into

(1.4) p(The — -gl_j(f'u(l —wuz); =0

in which #2p(7) = (12/¥) r%c(r)x(r). In one space dimension, the equation becomes
(1.3) plz)uy — (u(l — u)ug), =0.
Both (1.4) and (1.5) are of the form (1.1).

We shiall suppose that the degeneration of the nonlinearity A is such that at the values
n =0 and u = 1 interfaces can appear (we shall henceforth use the term ‘interfaces’ in the
mathematical sense that is common in degenerate diffusion, instead of the physical sense
used above). Such is the case for equations (1.4) and (1.5) above. Our main interest in
this paper lies in the behaviour of solutions of (1.1) and their interfaces for large time. This
interest was fired by previous works by Kamin and Rosenau [10, 13] on equation (1.1) with
single degeneration (4(0) = 0, 4'(s) > 0 for all s > 0). Among other results they showed
that as time tends to infinity the solution u converges uniformly on bounded sets to the
weighted mean of the initial distribution ug, i.e. u — % where % is given by

- . | Pla)ua(z) dz
 Jez)de

provided the numerator of this expression has a finite value. This extends a known result in

the case of constant p, which states that a solution with finite initial mass decays to zero.
Recently an interesting result has been proved by Kamin and Kersner in [9]. They

cousider equation (1.1) in RV with N > 3, again with single degeneration, and they proved
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that integrability of p on RN (p € L*(R")) implies that even if the initial distribution has
compact support and therefore the solution also has compact support for small times, there
is a time 0 < T < co such that for ¢ > T the support is no longer compact. This behaviour
differs strongly from the case of constant p, in which the support of the solution is a compact
set for all time ¢ > 0. For the same equation a converse result has been proved in [12]: in
this paper the author exhibits an explicit supersolution that also has compact support for
small time; in the case that p is radially symmetric and decreasing in 7, the support of this
supersolution remains bounded for all time if and only if rp(r) € L'(0,00). By means of
the comparison principle this implies that if rp(r) & L'(0, 00), then a solution of (1.1) with
bounded initial support has a bounded support at all finite time.

In this article we shall be interested in the Cauchy problem for (1.1) in one and two space
dimensions. This dimensional restriction is natural in the case of the hydrological model,
and also the mathematical properties that we wish to examine are different for dimensions
one and two on one hand and three and higher on the other. Since we will be interested in
solutions with interfaces between the regions {u = 0}, {0 < u < 1}, and {u = 1}, we assume

that
A e C'([0,1]), A >0o0n (0,1), A(0) = A’(0) = A'(1) =0,

H ; 1= 4t
A /A(S)ds<oo and / A(8) 5o < oo,
o+

s
In addition, the density function p and the initial data ug should satisfy

H, pecCRY)NL=®R"), p>0onRY;
Hp UQEC(RN), 0§u0510nRN.

Throughout this article we shall suppose that these hypotheses are satisfied.

To our knowledge, existence and uniqueness for the Cauchy problem associated with
(1.1) have not yet been proved in the literature. We therefore include these proofs in the
Appendix. The uniqueness is a consequence of the following Comparison Principle:

Theorem 1.1 Let N be equal to either one or two, and suppose that v, is a subsolution and
us a supersolution of Problem (P). If p(ugy—ug)s € L'(RY), then p(u—usg)4 (1) € L (RY)
for allt > 0 and

/ plur — uz)+(-t) < / puor — Uo2)+
RN RN
for allt > 0.

The definition of sub- and supersolutions is given in the Appendix.

We prove the following theorems.

Theorem 1.2 (Large-time behaviour) Let N be equal to either one or two, and let u be
the solution of (1.1) with instial data uo. If puo € L'(RY), then

/R ; p(:z:)ug (z)dz

/RN plz) dz

u(t) = 4:= as t— 00,
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' for (1NE t subsets of RY
as - o, uniformly on compact subsets o .

Eidns has rewarked in 5] that a siwilar result holds in the case of a single degeneration in
two space dimensions.

Ler the support of a function f (supp f) be defined as the closure of the set {z : f(z) > 0}.
A solution wof (1.1) for N = 1 is said to exhibit finite time blow-up if its support is bounded
frow above initially and there exists a time T such that suppu(t) is unbounded from above
for all time ¢ > T. For the formulation of Theorem 1.3 we shall need an auxiliary density
function o defined by

olr) = iy p(€)

the reason being that the function o is monotonic while p need not be.

Theorem 1.3 (Blow-up in one dimension) Let 1 be a solution of (1.1) for N =1, with
non-zeve initial data w,, such that the support of u is bounded from above ot time t = 0.
Then the following implications hold:
~
(2} eplxyde < o6 = finite time blow-up;
Ja

v
(i) rolryde = => no finite time blow-up.
Jo

If p is not decreasing. the two conditions above leave a small gap. In the class of decreasing
functions p, however, the characterisation is complete:

Corollary 1.4 Let the conditions of Theorem 1.3 be satisfied, and suppose in addition that
p is non-mcreasing on [K,20) for some K > 0. Then

00
finite time blow-up < f zp(z) dr < oo.
0

It follows from the inversion 7 = 1 — u that similar statements hold for the interface at
w = 1. Note that the hehaviour of p and wy towards —oo has no influence on the (qualitative)
behavionr of the upper bonndary of the support. We can apply these statements once to
{r > 0} and once to {x < 0} with independent results.

Jsing the Comparison Principle we can extend this result to a statement on a strip
) = R x (~1,1) with Neumann boundary conditions, with a density function p that does
not depend on the vertical coordinate: p(z, y) = p(z) on Q. Consider the problem

pu = AA(u) in Qr=Qx(0,T]
ou

1.6 —_— =

(1.6) 5 0 on 9Q x (0,7

U= Uy at 1 =0.

The following result easily follows from the Comparison Prinicple:
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Theorem 1.5 (Blow-up in a 2d strip) Let the initial condition ug be such that ug(z,y) =
1 for small = and uo(z,y) = O for large x. Let (\(t) denote the interface between {u > 0}

and {u = 0} at time ¢:
Then the following statements hold:

(1) If / zp(x) dx < oo then the interface {y will run off to infinity in finite time;
0

(i) If / zo(x) dz = oo then the interface (o will remain bounded for all finite time.
0

A similar statement holds for the interface ; between the sets {u =1} and {u < 1}.

A different way of extrapolating the one-dimensional results is by considering the two-
- dimensional radially symmetric problem and transforming the ensuing (one-dimensional)
equation to an equation of the form (1.1). In this case the auxiliary density function o is
different:

o(r) = min £2p(£).

0<€<r
We prove the following result:

Theorem 1.6 (Blow-up in 2d, radially symmetric case) Let u be a solution of (1.1)
with initial condition ug. Suppose that both p and uy are radially symmetric, and that supp uy
18 compact.

(i) If / p(r)rlogrdr < co and 0 € Int(supp ue), then the support of u ceases to be

compact in finite time;

(i) If / r)l(—):g—m dr = 0o, then the support of u is compact for all time.

Corollary 1.7 Suppose ug has compact support and 0 € Int(suppug). If r > r2p(r) is o
decreasing function of r on a neighbourhood of +oo, then the support of u becornes unbounded
in finite time if and only if

/ p(r)rlogrdr < co.
1

Remark 1.1. The proof of part (i) of Theorem 1.3 is based on the construction of a
supersolution. This construction can be done in all dimensions N > 1 (12], leading to the
following theorem:

Theorem 1.8 Let N > 1 and define o(r) = min{p(z) : |z| < 7} for 0 <7 < 0. Suppose
the solution u of Problem (P) has compact support initially. If

/ooo ro(r)dr = oo

then supp u(t) will be bounded for all time t 2 0.
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There is an interesting gap between the statements of Theorem 1.8 for N = 2 and Corollary
1.7 Clearly, the condition ro(r) ¢ L0, 00) is too weak in the case of radially symmetric
densities. But if we take a density function p = p(z,y) on R? that is only a function of z,
i, pla,y) = plar). then in the same way as in Theorem 1.5 we can compare it with solutions
of the one-dimensional problem. The result of this comparison is that for convenient initial
distributions the blow-np of interfaces is equivalent with zp(z) € L'(0,00), which implies
that the condition re(r) € L'(0,00) is sharp. It is not clear what a general condition for
blow-np of interfaces should be in a non-radially symmetric situation.

Theoretn 1.2 s proved in Section 2. The blow-up of interfaces in one space dimension
(Theorew 1.3) is studied in Section 3, and in two space dimensions in Section 4 (Theorem
1.6). Shortly before submitting the manuscript of this article to the editor, a manuscript
by V. AL Galaktionov, S. Kamin, and R. Kersner was brought to our attention, in which
Theorew 1.3 is also proved under more restrictive conditions on p.

Acknowledgement. The authors wish to express their gratitude towards C. J. van

Duijn for his valuable contribution, and to J. L. Vdzquez who has kindly suggested numerous
improvewents of the manuscript.

2 Proof of Theorem 1.2

Theoremn 1.2 was proved for the single-degeneration case in one dimension by Rosenau and
Kimin [13]. We give here a completely different proof which also applies to the case studied
by Rosenau and Kamin.

We shall use certain a priori estimates on the solution of Problem (P). The following
Lemnma is proved in Appendix A:

Lemma 2.1 Let u be the solution of Problem (P) with initial function ug, and set v = A(u).
Suppose that puyg € L(R™). Then the following statements hold.

=

(i) / - 7T) = [ pug  forall T>0 (consernation of mass);
JEN Ju=N

(ii) / Bl 7)) + [ [ Vul? < / oB(w) forall T30
SEN 0 JEN BN

¢
T

(iii) / Vo, 7Y < = forall 7>0.
JBN
where B(s) = [0" o/ (a)do with 3 = A~ and ¢ > 0 is a constant that does not depend on T.

Remark 2.1. Estimates as given in Lemma 2.1 are well known in degenerate diffusion
problems. It should be noted, however, that the conservation of mass is only true in one
and two space dimensions; indeed, the main result in [9], which holds for N > 3 (see the
Introduction), is proved by obtaining a contradiction to this statement.
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Proof of Theorem 1.2. It follows from the uniform continuity of the function v (this is
a consequence of [4], as is shown in the proof of Theorem A.2) that there exists a sequence
t, — oo and a function 9 € CRMN),0<5< A(1), such that v(t,) — 7 as n — oo, uniformly
on compact sets. Now let Q be an arbitrary bounded set of RY. Then by Lemma 2.1, part

(i), 1
vlte) - 77 /Q o(ta)

where C is a constant that depends on 2, so that

ik

for each bounded subset {2 C R¥. Therefore # is constant, and u(t,) = f(v(t,)) = @ := B()
as t, — oo, where 8 := A~!. The value of @ follows from the conservation of mass (part (i)
of Lemma 2.1). The fact that this limit is uniquely defined implies the convergence of u(t)
as t — oo. This concludes the proof of Theorem 1.2. ®

C
< OVt < =,
£2() in

v

I

3 Proof of Theorem 1.3

The proof of Theorem 1.3 is based on the comparison principle. First we consider a special
case.

Lemma 3.1 Let ug € L'(R), uy # 0, and suppose thai the support of ug is bounded from
above. If [ zp(z)dz is finite, then there exists a time T after which the support of the
solution u is unbounded from above.

Proof. Define the upper interface function
((t) = sup{z € R : u(z,t) > 0}.

For the purpose of contradiction we suppose that ((t) < oo for all ¢ € [0,00). Let the
sequence of smooth functions x,, be such that supp x,, is compact in (0,00), X, and |zxh ()|
are bounded uniformly in z and n, and finally x,, — 1 and X}, —+ 0 pointwise on {0, oo). We
substitute the test function

Tx,(z) ifz >0,
viz) = { 0 if £ <0

in equation (A.1). Then

]

]:/:o Alu){zx, }az dzdt
= - f;, ! /ﬂ " Alw)a{xn + X} dedt.

/ " op(@)ulz, T)x, () do [o " 2p()uo(z)x, (2) d
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Note that the function A(u), is well-defined by Lemma 2.1. Letting n — oo and applying
Lebessue’s dowminated convergence theorem we deduce that

- oo T pE(t)
(3.1 / rptein(e, T da — / zp(z)ug(a)dr = — /0 A A(u)g dzdt
Ju Jo .

T
- / Au(0, 1)) dt.
0

It pe LYE). then by Theorem 1.2, ©(0,t) = 2 > 0 as t = oo. Since the left-hand side
of (3.1) is bounded as T — oo, there exists a sequence {f,}, limn0tn = 00, such that
Alnl0,£,)) = 0 as n — oo, implying a contradiction. On the other hand, if p ¢ L'(R), then
Ly Theorem 1.2 the function u(-,t) converges to zero pointwise on R as t — oco. By the
dominated convergence theorem we conclude that the first integral in (3.1) tends to zero as
T — oo, At sowe time T there will be a sign difference between the left and the right hand
side of (3.1}, again implving a contradiction. °

We now turn to the proof of Theorem 1.3. First consider the case in which f0°° zp(z)dr <
. Let y @ B — B be a smooth cut-off function such that x(z) =1 for all z > 0, x(z) =0
for all r < =1 and 0 < v € 1 on R Define yy(z) = up(z)x(z + d) for such a value of
o > 0 that ¢ is not identically equal to zero. Theun vy € L'(R), and supp g is bounded from
above. If we denote the solntion of Problem (P) with initial data vy by v, then Lemma 3.1
implies that snppr will be unbounded from above in finite time. Since by the comparison
principle # > v on R x R*. the same holds for u.

Now assnme that [ xo(x)dz = co. In order to show that the support of u remains
hounded for all time, we compare the solution u with a supersolution with bounded support.
A similar supersolution was discussed in [12].

Suppose for the time being that we(x) = 0 for all > 0. Let the comparison function w
be defined by

1 z<0
wir,t) = { n~H a (1 - :1:2/g(t)2)] 0<z<g(t)
0 z 2 g(t),
where n(s) = [ A(7}/7dr, n(1) = a, and g : [0,00) — [0,00) is a function to be speci-
fiecd later. By explicit calculation it follows that the following conditions are sufficient to
gharantee that w is a weak supersolution in the sense of Definition A.1:

(3.2} pwy > Alw) . for0<zr<yg(t), t>0

1 0
plg(t)) Ox
(3.-1) w(, () > ug(x) for all z € R.

(3.3) gt 2 -

n(w)(g(t),t) forallt>0
This follows from the following argument: if P = {(z,t) € R x Rt : |z]| < g(t)} and
I'={(r,f) e R x R* : || = g(#)}, then it follows from (A.1) that w is a supersolution if

(35) - [ foue = Atwlaby+ [ (o~ Al <0
P Jr

JF
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for all appropriate test functions %. Here v = (v,,1,) is the unit vector normal to P that
points outward. If g is differentiable then v, = —g'(t)u,, and by conditions (3.2) and (3.3),
condition (3.5) is met. The condition (3.4) is necessary to apply the comparison principle
(Theorem 1.1).

Inequality (3.4) is satisfied due to our assumption that the support of 1, is contained in
{z < 0}. If we expand (3.2) we find

.

o [P(2)g'(t)  2a }
3.6 332{ - >—A'(w) for 0<z<g(t), t>0.
The right-hand side is non-positive and therefore it is sufficient to require that g satisfy
9'(t) > 2 forall 0<z<g(t),t>0
~ 9(t)o(z) T

With the definition of ¢ in mind we define g by setting

; _ 2a )
(57) 90 = oty el t>0

9(0) = 1.

Since On(w)/0z takes the value —2a/g(t) in £ = g(t), with this definition of g the function
w also satisfies (3.3).

Now that the comparison function has been defined, we need to determine the behaviour
of its interface {(z,t) : £ = g(t)}. The solution g of the problem (3.7) is given by

9(t)
(3.8) / zo(z) dz = 2at.
1

From the initial assumption zo(z) ¢ L'(0, 0o) it follows that g(¢) remains finite for all finite
time ¢. By the comparison principle the same holds for u.

We can relax the condition on the support of ug by shifting the supersolution rightwards
until the initial distributions ug and w(-,0) are ordered. If w is shifted rightwards by a
distance d > 0, then the ensuing condition on the behaviour of o is f d°°(:n —d)o(z) dr = oc;
since

00 2d oo
/ (z — d)o(z) dz > (z — d)o(z)dz + %/ zo(z) dz = oo,
d d 2d
this condition is satisfied. This concludes the proof of Theorem 1.3. °

Remark 3.1. If the condition [;° zo(z)dz = oo is satisfied, the proof of Theorem 1.3 not
only shows that the support of u stays bounded for all time, but also gives a (more or less
explicit) bound: suppu(t) C {z € R : z < g(t)}, where the function g is given by (3.8).
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4 Radial symmetry in two dimensions

Theorem 1.6 is proved by comparison with radially symmetric solutions of the same problem.
Let ¢ be a radially symetric solution of Problem (P). Then

Py = —1-(1“4(v),)r for0<r<oo,t>0.
-

By the change of variables s = logr we find
plsym = Av)g for —oo <5 <oo,t>0,

where p(s) = r2p(r). Note that 5(s) := mingee<s H(€) = o(r). Theorem 1.3 states that
the behaviour of interfaces depends on the integrability of sp(s) and s5(s) at infinity. This
translates in the following way:

/ sp(s)ds < o0 & / p(r)rlogrdr < oo
0 1

and
logr

——dr =oo0.
r

/sir(_s)dsz:oo¢=‘r/ o(r)
Jo 1

The statement of Theorem 1.6 then follows from Theorem 1.3. Note that the extra condition
() € Int{supp up) guarantees that we can find a subsolution with non-trivial support. °

The result of Theorem 1.6 is made possible by the existence of a scaling of the independent
variable r (s = logr) that maps the point r = 0o to 8 = co and gives the equation a one-
dirmensional form. This same scaling maps the point 7 = 0 to s = —o0, which implies that
by following exactly the same reasoning we can prove

Theorem 4.1 Let u be a solution of Problem (P) with initial condition up, let p(z) = p(|z]),
and suppose that 0 € supp ug.

1
(x) If | p(r)rlogrdr < oo, then after finite time supp u(t) shall contain the point r = 0;
0
. ! logr .
(i) If a(r)———;—- dr = oo, then 0 ¢ supp u(t) for all time t > 0.
0

Example. In (1] the authors describe a so-called focusing solution of the N-dimensional
porous medium equation

(4.1) w = Au™ in R¥Y x Rt.

The support of this solution contains a hole that shrinks as time increases, disappearing
totally at some finite time £*. The solution that they construct is radially symmetric and
of self-similar form: if we set #* = 0, and let v denote the (scaled) pressure associated with
(4.1), v = mu™=!/(m — 1), then the solution is given by

v(r,t) =r¥° 2(-7-&, r>0,t<0,
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where the self-similar variable 7 is given by # = tr~®. The function ¢ and the exponent
a € (1,2) are obtained by solving the ensuing ordinary differential equation.

In the case N = 2 we can use this solution to construct an explicit example of disappearing
interfaces. Again we perform the change of variables s = logr, after which the solution u
given by Aronson and Graveleau satisfies the equation

p(8)ur = (u™)ss on R,

where p(s) = e*. Initially—that is, at some finite time before t = 0—suppu = [—a, o0),
where a is a positive number. The transformation s = logr maps r = 0 to s = —o0, and
the closure of the hole in the support in the original variables therefore corresponds to a
disappearing of the left interface, clearly in finite time. Given the results of this paper, this
also follows directly from the form of 5. The interest of this solution lies in the fact that
the interface is given ezplicitly. The location of the interface is given by r = ¢(—t)!/* in the
original variables; in terms of s and ¢, the interface lies at

1
sza—log(——t)-l-c', t < 0.

Appendix A. Well-posedness and a priori estimates

This appendix is devoted to the proofs of existence and uniqueness of the solution of the Cauchy
Problem

p(z)u; = AA(u) inRY x RY
() N
u(z,0) =ug(z) forzeRr

in one and two space dimensions. We can write problem (P) in the equivalent form
(Ps) p(z)B(w): = Av in RN x RY
p v(z,0) = A(uyp(z)) forz € RrRY

where v = A(u) and § = AL
We borrow the definition of a weak solution from [3]. Set @ = RY x R*, and Qr = {(z,1) €
Q:t.<T}.

Definition A.1 The function u € C(Q) is a weak solution of Problem (P) if
(i) 0<u<1onQ;

() u satisfies the integral identity
1)) [ payula ot de - [ plehulanls0)ds =
t t a,l/}
/o ./n {puthy + A(u)Ay} dzdr — /0 /aﬂ A(’u)gg dzdr

for all smooth bounded domains 2 C RY, for all non-negative functions ¢ € C21(Q x [0,T))
that vanish on 02 for all t > 0.

Weak sub- and supersolutions are defined similarly, after replacement in (A.1) of the equality sign
by ‘<’ (for subsolutions) or >’ (for supersolutions).
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We establish the following resnlt.

Theorem A.2 Let N be equal to either one or two. There exists a weak solution of Problem (P).

Proof. We prove the theorem for N = 2, the extension to N = 1 being straightforward. We
set 82, = {r € B2 ;| < n} and Qur =y, x (0,T) and we consider the problem

(A2) V) = Av (z,t) € Qur
’(pn) ‘g% =1 (.’B,t) € (’)Qn X (0, T)

o(r,0) = vou(r) z€ Sy
in which
(i) pn € C®(0), pn > 0, and p, = p pointwise in R?;

(i) H, € C=([0, A(1)]), 4, = by >0 on [0, A(1)}, #n — B uniformly on [0, A(1)], and ], = B in
LY0, A(L));

(iii) vo = Alup); vou € C(y,), 1/n < von < A(1) — 1/n, and von — vo almost everywhere on

ol
ficauiN

Problem (P,,) has a unique classical solution v, [11] and it follows from the comparison principle
that 1/n < v, < A(1)— 1/n on Qqur.

We conclude from [4] that there exists a function v € C(Q) and a subsequence {v,, } such that
vy, — v uniformly on {|z| < R} x [0,T] for all R. We deduce from a similar identity for v, that v
satisfies the integral identity

/ pla)Bvle, ), ) dx — / ple)ua(z)p(z, 0) dz =
Q Q

' t
/0./9 {pB() Yy + vAY} dzdr — /0- /ag v_aélﬁ_ dzdr

for all smooth bounded domains §2 C B2, for all functions ¢ € C*!(Q x [0,T]) which vanish on 6Q
and for all £ > 0. The function u = B(v) satisfies the assertion of the theorem. °

The proof of Theorem 1.1 that we give here is an adaptation of the proof of a similar property
die to Bertsch, Kersner, and L. A. Peletier [3]. It should be noted that although the techniques
are simnilar, there is an interesting effect in the change from one or two spatial dimensions to three
dimensions and higher. This is further explained in Remark A.1.

Proof of Theorem 1.1. Again we only prove the theorem for V = 2; the extension to N =1 is
straightforward.

Define the functions w = u; — ug and wp = ug; — ugz. They satisfy
@) [ oot - [ 0 <

t £
< /O /Q (o + (Afuy) — Alug))Agh) /0 /6 (Alu) - Alu)
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for all appropriate domains £ and test functions 4. For the length of this proof we adopt the
notation 3, = 9t/0v. Define O = {z € R : |z| < n} and Qpy = O, x (0, ], and the function

Aluy) —
q(z,t) = { Al) — Alwa) if uy # up
0

Uy — ug
if uy = us

Remark that ¢ € L°(R? x R*), and that "qHL‘”(R?xRﬂ < | A/|| Lo 0,1)- We approximate g on Que
by functions gn such that

(A.4) n~? <agn < IIqlle(szw) +n"2o0n Qni;
(A.5) l{gn - Q)/\/ZI;"Lﬁ(QM) — 0 as n — oo,

and introduce as test functions the solutions 1, of

PP+ gD =0 in Qn
(A.6) =0 on 0Q, x [0,1]
P(z,t) =x(z)  onQy,

where x is a fixed function that belongs to C°(Q,) for n large enough and takes values in [0, 1].
The density p is bounded from below on Qpt, so (A.6) has a unique solution ¥, € C*1(Qn:). By
multiplying the equation for 1 with At/p we find that

(A7) ] t [ wiawr <o

where C is a constant independent of n.

Using 1), as a test function in (A.3) we find that

/ﬂn pxw(:,t) dx — ‘/ﬂn pwotn{-,0) dz < Ath(q—qn)Awn _/:/an,. qUns,

Denote the two integrals on the right-hand side I; and I;. We shall now show that both tend to
zero as n tends to infinity. First consider I;:
2 st
/ / anA¢n|2
0 J0n

t
q—0n
e
' o Jaul VA,
and the right-hand side of this expression tends to zero because of (A.7) and (A.5). To prove that
I, tends to zero, we compare the function 1, with the solution z, of

Az=0 mrp<iz|<n
z=0 |z| =n
z=1 |z] =10

where rg is such that suppx C {|z| < ro}. The solution 2, of this problem is z,(z) = (logn —
log |z|)/(log n — log 7). Since both %y, and z, are equal to zero on |z| = n, we have

0 <~y £ —2n, ON 02y,
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Explicitly this implies that

1
{A\') 11/-'1wl <

n(log n —logry)”

We can there estimate Iy by
27

) < t"A,”L"“(ﬂ.l)m

and the right-hand side of this expression tends to zero as n tends to infinity.
Sinee by the comparison principle 0 < ¢, <1 on Qyp, we can deduce from (4) that

{A.9) / pxw(,t)yde < I + 1'2+/Q puwoin(-, 0) dz

A

L+1 +/ pwo+ dz.
B2

The right-hand side of this expression is finite by the hypothesis of the Theorem. Passing to the

limit in (A.9) vields
/ pxw(-,t)dz < / pwoy dz
®2 Rr2

for all y € C=(®?) such that 0 € x < 1. The theorem then follows immediately from this inequality
by letting \ converge pointwise to the function sgn(w, ). °

Remark A.1l. The absence of a uniform lower bound for p introduces an interesting effect in the
well-posedness of the Cauchy Problem for equation (1.1). If the proof of Theorem 1.1 is rewritten
for spatial dimensions different from N = 2, the only important difference lies in the explicit
function z,. In one dimension, z,(z) = (n — z)/(n — 7o), so that 2,(n) = —1/(n—17p) tends to zero
as n — oo. This implies that I; tends to zero as n — oo, which is necessary to conclude. However,
when N > 3, z,(r) = (r?=¥ —n2=V)/(r?~N —n2~N). In this case, fpo |25 remains bounded away
from zero, and without an additional assumption on the solution in fact uniqueness does not hold

({9}, [sl, (6])-

Remark A.2. The proof of the comparison principle still holds when the condition 4 € C*([0,1])
is replaced by 4 € W»*(0,1) and the condition ug € C(RY), 0 < ug < 1 by ug € L®(RV),
0<upy<lac. onRV.

We conclude this appendix with the proof of Lemma 2.1.

Proof of Lemma £.1. We first prove the second part of the Lemma. By Theorems A.2 and 1.1
we can obtain v as the limit of functions vy, which are defined for all |z| < n and 0 < # < 7. First

fix R > 0 and set Bp = {z € RN : |z| < R}. We multiply the differential equation in Problem (P,)
by v, and integrate on {|z| < n} x (0,7):

(A.10) /B Pnx) Bn(vn (i, 7)) dz + /OT /B |V, )?

5/ pn(a:)Bn(vn(m,T))dz+// 'V'Unlz
Jxl<n 0 Jlzj<n
=/ Pn(Z) By {von) dz,

Jxl<n
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where Bp(s) = f; 7By (7)d7. The condition f pup < oo implies that the functions vg, can be chosen
such that [ pnfn(von) is bounded independently of n. Since the function B, o 87! is Lipschitz
continuous with a Lipschitz constant L that does not depend on n, the last term in (A.10) is
bounded as n — oo and therefore we can extract a subsequence—without changing notation—such
that Vo, converges weakly in L2(Bg x (0, 7)). With the uniform convergence of v, we can identify
the limit as Vv. Using the dominated convergence theorem and the weak convergence of Vu, we
can pass to the limit in (A.10) to obtain

/Ba P(x)B(v(:c,T))dx+‘/OT/BRW”lz < /RN o() B(uo) d.

The result then follows from the monotone convergence theorem.
To prove part (i), consider a monotonic cut-off function 7 € C°°(R) such that 7 = 1 on (—00, 1]
and 7 = 0 on [2,00). Take 9(z) = n(|z|/R) for some R > 0 as a test function in (A.1), giving

(a11) Lorucorw=[ oy [ [ vovy

where we have used the fact that Vo € L2(RY x (0,7)) by part (ii). We can estimate the last

integral in {A.11) by
, 1/2
RN g ( I/ IVvP)
R 0 JR<z|<2R

which tends to zero as R — oo. The result then follows from an application of the monotone
convergence theorem. '
To prove part (iii), multiply by tv,: the equation satisfied by v, and integrate:

7 1/ d,_
tpnf (vn )02 =—--—// t—Vu, |
~/(; [zkn P n( ") t 2o jzl<n dtk ]
1 /" T
T
0 Jiz|<n lz]<n

or ,
[ vt [ [ v,
jzl<n 0 Jiz|<n
after which the result follows from the second part of the Lemma. . °
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